(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
exp(z0, 0) → s(0)
exp(z0, s(z1)) → *(z0, exp(z0, z1))
*(0, z0) → 0
*(s(z0), z1) → +(z1, *(z0, z1))
-(0, z0) → 0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
EXP(z0, 0) → c
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
*'(0, z0) → c2
*'(s(z0), z1) → c3(*'(z0, z1))
-'(0, z0) → c4
-'(z0, 0) → c5
-'(s(z0), s(z1)) → c6(-'(z0, z1))
S tuples:
EXP(z0, 0) → c
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
*'(0, z0) → c2
*'(s(z0), z1) → c3(*'(z0, z1))
-'(0, z0) → c4
-'(z0, 0) → c5
-'(s(z0), s(z1)) → c6(-'(z0, z1))
K tuples:none
Defined Rule Symbols:
exp, *, -
Defined Pair Symbols:
EXP, *', -'
Compound Symbols:
c, c1, c2, c3, c4, c5, c6
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
-'(0, z0) → c4
EXP(z0, 0) → c
-'(z0, 0) → c5
*'(0, z0) → c2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
exp(z0, 0) → s(0)
exp(z0, s(z1)) → *(z0, exp(z0, z1))
*(0, z0) → 0
*(s(z0), z1) → +(z1, *(z0, z1))
-(0, z0) → 0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
*'(s(z0), z1) → c3(*'(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
S tuples:
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
*'(s(z0), z1) → c3(*'(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
K tuples:none
Defined Rule Symbols:
exp, *, -
Defined Pair Symbols:
EXP, *', -'
Compound Symbols:
c1, c3, c6
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
-(0, z0) → 0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
exp(z0, 0) → s(0)
exp(z0, s(z1)) → *(z0, exp(z0, z1))
*(0, z0) → 0
*(s(z0), z1) → +(z1, *(z0, z1))
Tuples:
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
*'(s(z0), z1) → c3(*'(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
S tuples:
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
*'(s(z0), z1) → c3(*'(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
K tuples:none
Defined Rule Symbols:
exp, *
Defined Pair Symbols:
EXP, *', -'
Compound Symbols:
c1, c3, c6
(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
*'(s(z0), z1) → c3(*'(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(*(x1, x2)) = [2] + [3]x1
POL(*'(x1, x2)) = 0
POL(+(x1, x2)) = [3] + x2
POL(-'(x1, x2)) = x1
POL(0) = [2]
POL(EXP(x1, x2)) = x2
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(exp(x1, x2)) = [1] + [3]x1 + [2]x2
POL(s(x1)) = [2] + x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
exp(z0, 0) → s(0)
exp(z0, s(z1)) → *(z0, exp(z0, z1))
*(0, z0) → 0
*(s(z0), z1) → +(z1, *(z0, z1))
Tuples:
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
*'(s(z0), z1) → c3(*'(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
S tuples:
*'(s(z0), z1) → c3(*'(z0, z1))
K tuples:
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
Defined Rule Symbols:
exp, *
Defined Pair Symbols:
EXP, *', -'
Compound Symbols:
c1, c3, c6
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
*'(s(z0), z1) → c3(*'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
*'(s(z0), z1) → c3(*'(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(*(x1, x2)) = [2]x1 + x1·x2 + [2]x12
POL(*'(x1, x2)) = x1
POL(+(x1, x2)) = [1]
POL(-'(x1, x2)) = [2]x1 + [2]x2 + x22 + x12
POL(0) = [2]
POL(EXP(x1, x2)) = [2]x2 + x22 + x1·x2
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(exp(x1, x2)) = [1] + [2]x2 + [2]x12
POL(s(x1)) = [1] + x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
exp(z0, 0) → s(0)
exp(z0, s(z1)) → *(z0, exp(z0, z1))
*(0, z0) → 0
*(s(z0), z1) → +(z1, *(z0, z1))
Tuples:
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
*'(s(z0), z1) → c3(*'(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
S tuples:none
K tuples:
EXP(z0, s(z1)) → c1(*'(z0, exp(z0, z1)), EXP(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
*'(s(z0), z1) → c3(*'(z0, z1))
Defined Rule Symbols:
exp, *
Defined Pair Symbols:
EXP, *', -'
Compound Symbols:
c1, c3, c6
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)